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Abstract  
The   tower   defense   game   is   a   well-known   strategy   game.   Many   machine   learning   algorithms   like  
deep   reinforcement   learning   have   been   developed   to   learn   how   to   play   a   tower   defense   game.  
However,   according   to   the   research   papers   that   we   found   through   Google,   not   many   studies  
have   tried   to   use   supervised   learning   like   CNN   to   train   the   agent.   In   our   study,   we   built   two   CNN  
models,   one   is   a   classification   model   while   the   other   is   a   regression   model.   We   would   discuss  
all   the   details   that   we   make   to   the   original   game   as   well   as   the   whole   workflow.   The   results  
show   that   the   CNN   regression   model   can   produce   a   better   result   than   the   CNN   classification  
model.   This   study   gives   us   a   new   direction   in   the   area   of   game   development.   

Game   Introduction  
Game   Concept  
This   2D   tower   defense   game   is   developed   in   Unity   (C#).   In   this   game,   Monsters   walk   from   the  
blue   portal   on   the   top   left   to   the   red   portal   on   the   bottom   right.   And   the   player   needs   to   use   coins  
(collected   by   killing   monsters)   to   purchase   different   types   of   towers   and   place   the   tower   properly  
to   prevent   monsters   from   reaching   to   the   end   of   the   road.[1]  

 

Target   Audience  
All   age   groups  

 

Genres  
iTower   is   a   single-player,   2D,   tower   defense   game.  
 

Objective  
To   reach   the   next   level,   the   player   current   life   must   remain   greater   than   0   after   the   last   monster  
of   this   level   is   exterminated   or   arrives   at   its   destination.  
 

Game   Details  
More   game   details   and   modifications   could   be   found   in   Methodology   -   Game   Design.  
 

Project   Objective  
The   goal   for   this   semester   is   to   create   an   agent   that   could   learn   to   play   the   game   wisely.   Based  
on   the   aspects   of   current   gold   (numbers),   current   monsters   (numbers   and   types),   towers   (costs  



and   types),   the   agent   should   conduct   the   following   possible   behaviors:   placing   towers   at   proper  
time   and   location,   selecting   the   proper   types   of   towers,   upgrading   properties   of   the   towers.  
 

Project   Guideline  
- Several   necessary   modifications   of   the   original   game,   such   as   monster   routes,   tower  

placement.   Details   could   be   found   in   Methodology   -   Game   Design.  
- The   setup   of   a   reliable   network   for   the   game   and   the   python   agent   transmitting   data  

between   each   other   via   TCP.   Details   could   be   found   in   Methodology   -   Communication  
Design.  

- An   efficient   method   to   collect   the   raw   data   from   the   gameplay.   Details   could   be   found   in  
Methodology   -   Raw   Data   Collection.  

- An   efficient   method   to   pre-process   and   label   the   collected   data.   Details   could   be   found   in  
Methodology   -   Data   Pre-processing   and   Labeling.  

- The   proper   application   of   TensorFlow   2.0   (Keras)   and   Convolutional   Neural   Network  
(CNN)   for   the   game   project.   Details   could   be   found   in   Methodology   -   Machine   Learning  
Design.  

 

Prior   Research  
Over   the   years,   machine   learning   has   been   widely   applied   to   game   development.   Many  
research   papers   have   been   published   in   this   area,   and   a   lot   of   new   algorithms   have   been  
developed   to   enhance   the   performance   of   the   game   agent.   This   revolution   gives   us   a   new   idea  
and   direction   on   how   to   improve   the   mechanism   to   make   the   game   more   smart   and   unique.  
Many   traditional   machine   learning   methods,   as   well   as   deep   learning,   are   applied   in   game  
development.   One   famous   example   is   AlphaGo,    which   developed   by   DeepMind,   owned   by  
Google,   uses   CNN   and   search   trees   to   play   Go.   Two   other   early   examples   are   Waston   and  
Deep   Blue,   which   were   both   developed   by   IBM.  

When   we   focus   on   game   development,   reinforcement   learning,   including   Q-learning   and   deep  
Q-learning,   is   more   widely   used   than   other   machine   learning   methods.   For   instance,   in   a   game  
similar   to   Super   Mario,   one   general   idea   of   playing   this   game   is   capturing   several   screenshots,  
and   then   building   a   deep   Q   learning   model.   This   algorithm   is   efficient   in   this   game,   and   the  
pattern   is   not   difficult   to   detect.   Many   websites   offer   users   the   environment   to   test   their  
reinforcement   learning   model.   Some   companies   open   the   API   for   machine   learning   that   allows  
the   users   to   call   it   directly.   This   policy   helps   developers   save   a   lot   of   time   because   there   is   no  
need   for   the   developers   to   look   inside   the   details   of   the   game.   Unity   has   released   a   machine  
learning   model   called   NavMash   and   a   Python-based   library,   which   allows   the   developer   to   train  
their   game   under   the   Unity   environment.  



Unity   has   provided   many   demos   with   existing   algorithms   for   machine   learning,   where   we   can  
download   directly   from   Github.   These   games   already   include   some   built-in   API   that   can   be  
called   directly   with   Python.   However,   our   group   wants   to   do   something   so   that   we   choose   a   raw  
game   (the   game   without   any   machine   learning   model   inside).   After   doing   research,   most   games  
we   found   are   using   reinforcement   learning   as   the   basic   algorithm.   Many   reinforcement   learning  
algorithms   are   applied   in   strategy   games,   especially   real-time   strategy   games,   like   tower  
defense   games,   Civilization   IV.[2]   Some   tower   defense   games   are   3D,   and   the   mechanism  
inside   is   quite   complicated.   However,   the   mobile   version   of   the   tower   defense   can   also   be   used  
to   train   agents   and   build   models,   which   is   easier   to   understand   compared   with   the   former  
one.[3]  

Although   it   is   possible   to   simplify   these   strategy   games,   a   lot   of   studies   have   proved   the   issues  
that   we   must   face   about.   For   instance,   In   tower   defense   games   and   other   real-time   strategy  
games,   the   Agent   needs   to   make   online   decisions   according   to   the   environment   change.   The  
Agent   inside   the   game   must   make   successive   attempts   without   enough   information.[4]   Another  
challenge   for   Agent   to   play   real-time   strategy   games   is   the   Agent   has   to   learn   in   an  
unsupervised   manner   in   a   complex,   non-adaptive   environment.[5]   Train   Agents   in   real-time  
strategy   games   are   time-consuming   and   labor-intensive.[6]   One   solution   is   to   use   a   high-level  
strategy,   which   is   chosen   from   different   game   situations   and   a   fixed   opponent   strategy.[7]  

Not   only   reinforcement   learning,   but   a   large   number   of   other   algorithms   can   also   be   used   on  
tower   defense   games   and   other   strategy   games.   Tower   defense   games   offer   many   choices   for  
researchers.   Some   papers   focus   on   increasing   the   number   of   monsters   killed[8],   others   might  
be   the   method   to   classify   the   components   inside   the   game,   like   using   image   recognition   to  
detect   the   monsters   and   towers.[9]   One   study   applied   a   genetic   algorithm   with   two   different  
neural   networks:   Feed-forward   and   Elman   Recurrent.[10]   Hybrid   case-based   reasoning   (CBR)  
is   also   a   good   choice,   where   spatial   environment   information   is   abstracted   into   a   number   of  
influence   maps.   [11][12]  

Reinforcement   learning   might   be   a   good   choice   right   now,   but   might   not   be   the   best.   CNN   is  
also   used   in   game   development.   CNN   regularly   works   on   image   classification.   When   the   images  
are   resized   to   small   resolution,   the   accuracy   of   the   model   might   reach   0.7.   Now   we   have   a  
general   idea:   CNN   might   work   if   the   game   contains   a   map.   However,   we   do   not   find   many  
studies   on   CNN   applications   on   tower   defense   games.   Tower   defense   game   contains   a   map,  
which   allows   the   developer   to   convert   to   the   matrix   (similar   to   an   image,   but   the   number   of  
layers   might   be   different).   We   found   a   game   on   Github.   We   guess   CNN   shall   work   because   the  
map   of   the   game   is   smaller,   and   the   mechanism   is   more   straightforward   compared   with   other  
tower   defense   games.   We   try   to   only   focus   on   the   smaller,   easy   2D   games.   

In   this   study,   we   mainly   focus   on   using   the   CNN   model   to   train   our   tower   defense   game.   To  
prove   our   idea,   we   use   both   the   CNN   classification   model   and   the   neural   network   regression  
model.  



Tools  
● Keras  
● TensorFlow   2  
● Anaconda  
● Python   3.7  
● Unity  
● C#  
● JSON  

Methodology  
Game   Design  
 

 

Figure   1.   The   user   interface   of   the   tower   defense   game  
 

The   game   we   work   on   is   a   tower   defense   game   that   can   be   found   on   Github.   It   is   built   with   Unity  
and   C#.   The   game   contains   a   map   whose   size   is   12   (in   X-axis)   and   8   (in   Y-axis).   The   overall  
number   of   tiles   on   the   map   is   96,   including   green   ones   (grassland)   and   yellow   ones   (sand   path).  



Four   types   of   towers   are   offered   in   the   game:   storm   tower   (labeled   as   1),   ice   tower   (labeled   as  
2),   fire   tower   (labeled   as   3),   and   poison   tower   (labeled   as   4).   The   price   for   each   tower   is  
presented   below   that   tower.   One   difference   of   this   game   is   it   shall   not   be   considered   as   a  
continuous   game   since   it   could   pause   automatically   after   each   “wave”.   The   monsters   are  
generated   as   a   queue,   but   they   would   not   come   out   together   at   once.   Instead,   a   fixed   number   of  
monsters   would   come   out   each   time,   which   equals   the   number   of   waves.   For   instance,   two  
monsters   would   come   out   in   wave   2.   
 
The   initial   money   and   lives,   and   the   map   are   defined   in   the   game.   But   we   modified   the   game   so  
that   it   can   listen   to   the   Agent,   and   fetch   the   parameters   from   the   JSON   data   stream.   For  
instance,   the   session   called   generate   data,   each   game   would   start   with   500   coins   and   50   life  
points.   Once   life   points   reach   zero,   or   there   is   no   place   for   towers,   then   the   game   ends.   The  
game   would   generate   a   spawn   portal   and   a   target   portal.   Monsters   would   be   spawned   in   the  
spawn   portal   and   move   toward   the   target   portal   on   the   designated   path.   The   monster   number  
would   be   incremented   as   the   wavenumber   increases.  

 

Figure   2.   The   illustration   of   the   game.   The   grey   arrows   represent   the   route   of   each   monster,   and  
the   monsters   can   only   walk   on   the   sand   path.   The   smaller   circle   represents   a   tower,   and   the  
larger   circle   represents   its   attack   range.   Note   1)   the   monster   might   not   be   killed   if   it   was  
attacked   only   once;   2)   we   have   modified   the   game   to   extend   the   attack   range.   In   the   latter  
study,   we   use   coordinates   to   represent   the   position   of   each   tower   and   each   monster.  



Refer   to   figure   2,   here   are   several   things   we   have   changed   in   this   game.   1)The   path   of   each  
monster   in   the   original   game   is   based   on   the   A-star   algorithm,   but   we   modified   the   game   to  
make   them   move   within   a   fixed   path.   A   monster   would   not   be   killed   unless   it   is   attacked   by   one  
or   more   towers   at   the   same   time.   2)   there   is   some   limitation   on   the   number   of   towers   that   can  
be   placed   in   each   wave.   We   have   modified   the   game   so   that   the   range   of   the   number   of   towers  
placed   in   each   wave   is   2   to   4,   but   users   can   change   these   parameters   directly   in   the   Python  
code.   3)   In   the   original   game,   the   function   that   places   the   tower   is   triggered   by   the   mouse   click.  
But   this   time,   the   function   of   placing   towers   is   redesigned   as   an   API   that   can   be   called   by   the   C#  
program.   This   modification   has   also   been   applied   to   selling   towers   and   upgrading   towers.   4)  
After   doing   research,   we   find   data   send   and   data   receive   in   C#   cannot   be   invoked   in   the   main  
thread.   So   we   create   a   new   thread   that   can   handle   the   data   transmission   independently.   5)   The  
Python   agent   has   a   thread   pool   so   that   the   python   program   can   play   multiple   games   together   in  
a   multithreaded   environment   without   human   intervention.   
 

- Life   and   Money   Modification:  
Before   we   modify   the   game,   the    Game_Manager.cs    can   load   the    GameData.txt    file   in   the  
Resource   folder.   The   life   and   currency   value   to   be   initialized   for   the   game   are   written   in   this   file.  
The   format   is   “life,   currency”.   The   Game_Manager   would   use   these   values   to   start   the   game.  
Now,   we   let   the   agent   send   initial   money   and   lives   as   parameters   to   the   game.   
 

- Tower   Instantiation   Modification:  
Modify   the   code   for    Game_Manager.cs   /   TileScript.cs .   Towers   are   instantiated   in   the   function  
placeTower    of   the   Game_Manager.   By   modifying   the   placeTower   function,   the   python  
program   is   able   to   instantiate   new   towers   at   the   beginning   of   the   game   without   complete  
previous   “click   button   -   track   coordinate   -   left-click   map   -   instantiate”   instantiation   cycle.   Instead,  
the   python   program   can   simply   generate   the   coordinates   of   the   tower   and   directly   call  
placeTower   to   place   a   new   tower   in   the   target   grid.   We   call   the   new   function   PlaceTowerAPI.The  
interval   of   the   number   of   towers   that   can   be   placed   in   each   wave   is   2-4.  
 

- Map   Modification:  
Assets/Scripts/Managers/LevelManager.cs   is   responsible   for   initializing   maps   for   each   game  
trial.   Map   config   is   currently   stored   in   Resource/LevelData.txt.   Blue   and   Red   portals   are  
spawned   by   SpawnPortals()   in   LevelManagers.cs.   The   map   could   be   changed   by   editing   those  
files.   In   the   previous   iteration,   the   map   is   fixed,   and   the   learning   process   is   based   on   this   map.  
Now,   the   game   map   is   sent   directly   from   Agent   to   the   game,   which   means   we   can   modify   the  
map   without   changing   any   code   in   the   game.  
 

- Monster   Life   and   Speed:  
Monster   speed   can   be   modified   based   on   the   level   to   increase   the   difficulty   of   our   game.   The  
monster   life   changes   may   need   to   be   designed   in   a   non-linear   pattern.   As   initial   3   HP   is  



impossible   for   monsters   to   reach   the   red   portal,   and   the   terminal   firepower   of   towers   may   be  
reached   quickly   by   a   linear   increase   of   monster   HP.  
 

- Monster   Amount:  
Monster   amount   increment   speed   is   doubled   to   2   per   wave   to   prevent   too   many   perfect   game  
results,   which   are   not   useful   for   learning   progress.   The   wavenumber   does   not   go   as   1,2,3,4..,  
but   go   like   2,   4,   6,   8…   
 

- Error   handling:  
In   the   original   game,   the   master   might   be   stuck   due   to   some   internal   errors   or   bugs   caused   by  
the   author   on   the   Github.   We   set   a   max   threshold   time   for   each   wave   to   allow   the   game   to  
restart   automatically   if   it   detects   some   errors.   
 

- Dependency   Removal:  
This   part   is   important   when   we   use   the   CNN   regression   model.   Normally,   the   next   tower  
placement   would   depend   on   the   tower   placement   if   we   only   call   place   tower   API.   That   means   if  
we   play   multiple   games   together,   the   tower   placement   in   one   wave   cannot   be   converted   to   any  
other   wave   if   they   are   not   in   the   same   game.   Now   we   have   three   APIs,   place   tower   API,   sell  
tower   API,   and   upgrade   tower   API.   To   reduce   unnecessary   operations,   in   each   wave   we   must  
follow   the   order:   place   tower->sell   tower->upgrade   tower.  

 
Figure   3.   The   basic   workflow   of   with/without   dependency  



When   we   use   the   CNN   classification   model,   it   does   not   matter   which   mechanisms   we   use.   But   if  
we   switch   to   the   CNN   regression   model,   we   must   consider   the   dependency.  
 

- Reward   function:  
In   the   original   game,   there   are   two   parameters   that   we   can   use   to   verify   if   the   tower   placement  
is   good   or   not:   money   left   and   lives   left.   But   the   two   parameters   might   conflict   with   each   other  
because   they   are   complementary.   If   we   kill   more   monsters,   it   is   likely   that   less   money   would   be  
left,   and   vice   versa.   It   is   not   guaranteed   that   we   can   kill   more   monsters   and   earn   more   money   at  
the   same   time.   Thus,   we   redesign   the   reward   function.   The   equation   includes   two   parts.   The  
former   part   is   called   min   remained   path   length.   Suppose   there   are   two   monsters:   blue   monster  
and   red   monster.   The   blue   monster   is   killed   after   going   through   19   cubes.   The   total   length   of   the  
path   is   40   cubes.   Then   the   blue   monster   has   21   cubes   left.   However,   suppose   the   red   monster  
has   been   killed   after   going   through   35   cubes,   then   the   remaining   length   is   only   15   cubes.  
According   to   the   reward   function,   we   would   only   choose   the   min   one,   15   cubes.   On   the   other  
hand,   because   both   two   monsters   are   killed   before   they   reach   the   end,   the   left   lives   remain  
unchanged,   still   50   lives.   Now   the   final   reward   value   would   be   15+50   =   60.   

 
Figure   4.   The   basic   mechanism   to   calculate   the   reward.   The   reward   function   can   be   divided   into  
two   parts:   min(remain   length)   and   lives  
 

- Game   termination:  
In   the   previous   session,   the   game   would   terminate   if   there   is   no   money   or   lives   left,   and   it   might  
cause   a   problem.   The   user   might   still   lose   the   game   even   though   he   killed   a   lot   of   monsters   but  
no   money   left.   To   solve   this   problem,   we   increase   the   initial   money   from   50   to   500,   and   the   initial  
lives   from   10   to   50.   The   agent   can   place   as   many   towers   as   it   can,   but   the   total   number   of  
towers   cannot   exceed   the   max   threshold   (when   there   is   no   grassland   left).   After   doing   that,   the  
max   number   of   waves   that   the   agent   can   still   survive   is   wave   20   or   even   22,   while   the   early  
session   is   only   10.   In   a   word,   there   are   two   ways   to   terminate   the   game:   no   lives   left,   no   place  
for   a   new   tower.  



 
- Game   Flow   Summary:  

 
Figure   5.   The   overall   workflow   of   the   game   section.   This   flow   chart   describes   the   basic  
mechanism   of   the   game.   
 
 



Agent   Design  
The   Agent   we   designed   is   written   in   Python,   a   better   language   in   machine   learning.   The  
environment   we   use   is   Ubuntu   18.04,   with   Anaconda   3.7.   The   Unity   company   has   released   the  
Linux   version   of   Unity   Hub,   which   makes   it   possible   to   switch   the   target   of   the   Unity   from  
Windows/Mac   to   Ubuntu   without   modified   code.   We   also   installed   Rider   from   JetBrains,   a  
cross-platform   C#   IDE.   

 

Figure   6.   The   basic   structure   of   the   Agent   (right   part).   The   Agent   has   three   main   functions:  
generating   data,   building   CNN,   and   drawing   charts.   The   green   parts   represent   the   code   written  
by   iTower   team   members,   the   blue   parts   represent   the   code   from   external   libraries,   and   the  
yellow   parts   represent   the   code   modified   by   iTower   team   members   to   enable   specific   functions  
related   to   the   project   need.   Note:   the   original   game   we   found   on   Github   does   not   have   any   API  
to   communicate   with   external   programs   via   TCP   or   other   protocols.   We   must   modify   the  
structure   of   the   game   to   enable   its   data   exchange   function   (we   would   discuss   the   details   in   the  
Communication   Design   part).   
 

Refer   to   figure   6,   there   are   three   main   functions   in   the   Agent,   and   each   function   has   several  
sub-functions.    1)   The   Agent   can   generate   data.   1.1)The   game   can   not   create   data  
automatically   until   an   agent   communicates   with   it.   Because   no   data   has   been   recorded   before,  
the   Agent   would   play   the   game   randomly   (generate   the   coordinates   and   type   of   tower  
randomly).   1.2)   The   Agent   would   write   text   files   after   it   receives   the   data   (for   details,   please  
refer   to   the   Communication   Design).   The   agent   would   collect   and   store   the   data   into   text   files  
(for   the   details   of   the   structure   of   the   text   file,   please   refer   to   Pre-processing   and   Labeling   part).  
1.3)   The   Agent   has   a   threading   pool   to   enable   multiple   threading.   The   data   collection   part   is  
time-consuming,   and   the   average   time   to   play   one   round   is   1   minute.   The   threading   pool   allows  
the   Agent   to   play   multiple   games   at   the   same   time.   The   maximum   clients   (game)   that   the   Agent  



(server)   can   connect   to   is   25,   according   to   our   test.   The   number   might   be   larger   if   the   computer  
has   more   CPU   and   memory.   2)   We   use   CNN   as   our   machine   learning   method.   2.1)   We   use  
Keras   API   in   TensorFlow   2.0   (for   details,   please   refer   to   the   Machine   Learning   Design).   3)   the  
Agent   would   analyze   data   and   draw   charts.   3.1)   The   python   graph   library   we   use   is   matplotlib.   
 

- Agent   Flow   Summary:  
We   designed   two   models   for   the   agent,   one   is   a   CNN   classification   model,   the   other   is   a   neural  
network   regression   model.   Note:   the   regression   model   could   be   considered   as   part   of   the   CNN  
classification   model.   We   would   mainly   focus   on   the   neural   network   regression   model   because  
the   performance   of   this   model   is   much   better.   We   would   also   compare   the   difference   between  
these   two   algorithms.   
 
As   we   mentioned   in   Agent   design,   the   whole   machine   learning   algorithm   is   put   inside   the  
Python   agent,   including   data   generation,   model   training,   model   verification,   and   data   analysis.  
The   Unity   game   itself   does   not   include   any   machine   learning   models   itself.   Instead,   we   build   an  
API   that   allows   the   game   to   communicate   with   the   agent,   like   receiving   and   sending   data   in  
JSON   format.  
 

 

Figure   7.   The   basic   workflow   of   the   Agent   (NN   regression   mode).   The   whole   process   can   be  
divided   into   four   main   steps:   generate   data,   train   model,   verify   model,   and   analyze   data.   

This   workflow   describes   the   first   three   sessions.   In   step   one   (generate   data),   the   random  
generator   inside   the   agent   generates   3000   tower   placements   and   sends   them   to   the   game.  
Each   sample   includes   tasks:   place   tower,   sell   towers   and   upgrade   towers.   Place   tower:   choose  



any   one   of   the   four   types   of   towers,   put   the   tower   onto   the   game   map,   represent   the   tower   with  
an   index   number.   According   to   the   coordinate   system   we   build   in   the   game   design   session,   the  
data   structure   to   represent   the   placement   is   clearly   described   in   figure   7.   If   there   is   no   error,   the  
reward   and   wave   numbers   would   be   stored   together   with   the   placement   map   as   JSON   format  
files.   Thus,   about   3000   JSON   files   would   be   stored   in   disk   for   step   two.   In   each   wave   of   the  
game,   one   coordinate   on   the   map   cannot   be   used   twice,   which   means   all   the   random  
coordinates   are   unique.  

In   step   two   (train   data),   the   regression   model   is   built   with   Tensorflow   and   Keras.   One   difference  
between   this   regression   model   and   the   CNN   classification   model   is   the   depth.   When   we   load  
the   3000   JSON   files   back   from   the   disk,   the   game   map   is   stored   as   a   3D   NumPy   array.   Before  
importing   into   the   networks,   the   high   dimension   array   needs   to   be   flattened   as   a   one   dimension  
array   and   plus   the   wavenumber.   The   depth   of   the   networks   becomes   small   but   its   width  
increases   a   lot   (Please   go   to   the   machine   learning   session   to   see   the   details).   Another  
difference   is   the   data   set.   We   divide   the   whole   3000   data   into   the   train   set   and   the   verify   set.  
After   30   epochs   training,   we   get   30   weight   files   (Normally,   the   model   would   only   store   the   last  
weight   only.   However,   we   add   a   callback   function   so   that   the   weight   file   after   each   epoch   is  
stored   as   well)   and   select   the   one   with   highest   R2   value   (R2   value   is   used   in   regression  
problems).   

In   step   three   (verify   data),   the   neural   network   would   load   the   weight   file   (the   best   one)   we  
created   in   step   two.   The   Agent   will   generate   another   1000   samples   for   model   verification.   In   this  
step,   the   networks   work   as   a   filter   to   only   maintain   the   top   N   samples   with   the   highest   reward.   

Figure   8.   The   basic   relationship   between   wavenumber   and   the   number   of   samples.   In   this   case,  
the   value   of   n   equals   to   3000,   but   the   values   of   m   are   varied.   The   minimum   value   of   m   could   be  
10   while   its   maximum   value   could   reach   20.  



If   we   consider   the   whole   data   collection   as   a   matrix,   then   the   index   of   a   sample   would   be   a   row  
and   the   wavenumber   would   be   a   column.   Due   to   the   variety   of   tower   placements,   the   number   of  
waves   that   Agent   can   survive   is   also   different.   There   are   two   mechanisms   to   terminate   the  
game:   use   up   lives,   no   place   left   for   a   new   tower.  
 

 
Figure   9.   The   basic   structure   of   a   JSON   file   that   sent   from   the   Agent   to   the   game  
 
As   we   mentioned   above,   each   sample   that   is   randomly   generated   by   the   Agent   contains   three  
tasks:   place   towers,   sell   towers,   and   upgrade   towers.   To   narrow   down   the   range   of   the   random  
generator   inside   Agent,   we   set   some   internals   to   restrict   the   randomness.   For   instance,    the  
minimum   number   of   placing   towers   is   two   while   the   maximum   number   is   six.    The   fields   in   each  
object   are   also   different.   When   upgrading   towers,   we   do   not   need   to   consider   the   type   of   tower  
that   is   already   placed,   but   the   upgrade   level.   To   make   it   convenient,   we   only   allow   each   tower   to  
be   upgraded   at   most   twice.  
 

 
 
 
 



Communication   Design  
 
The   communication   design   session   is   a   key   point   in   our   project.   The   original   game   we   found   on  
Github   can   only   be   controlled   by   a   mouse.   It   cannot   communicate   or   exchange   data   with   any  
external   programs.   In   this   session,   we   discuss   the   details   about   the   communication   API   we   add  
to   the   game   and   how   it   works.  

 

Figure   10.   The   mechanism   of   data   exchange   between   Game   (Unity)   and   Agent   (Python)   via  
TCP.   

We   modified   the   game   to   enable   the   TCP   client   function.   The   Agent   works   as   a   server-side.  
When   both   games   and   Agents   listen   to   the   same   IP   address   and   the   port   number   on   one  
computer,   the   TCP   connection   would   be   established.   Data   exchange   between   the   client   and  
server   is   JSON   format   encoded   in   UTF-8.   The   first   data   sent   from   the   Agent   to   the   game   is   the  
initial   parameters.   The   initial   parameters   include   all   the   necessary   parameters   as   a   JSON  
format   that   the   game   needed.   In   the   original   game,   the   game   map   is   built   inside   the   game,   but  
now   we   allow   the   Agent   to   generate   a   game   map   randomly   and   send   it   to   the   game   before  
playing   it.   The   initial   money   and   lives   are   also   determined   by   the   Agent   rather   than   the   game  
itself.   The   reason   to   do   that   is   to   improve   the   flexibility   of   our   project.   When   the   game   finishes  
one   operation,   it   would   send   “OK”   back   to   Agent,   waiting   for   the   next   operation.   The   random  
generator   is   the   key   function   inside   the   Agent   that   used   to   generate   new   tower   placements   that  
we   mentioned   above.   When   the   client   of   the   game   receives   these   JSON   files,   it   would   call   three  
APIs   in   the   main   thread:   Place   Tower   API,   Sell   Tower   API,   and   Upgrade   Tower   API.   At   first,   we  



try   to   simulate   the   mouse   click,   but   later   on,   it   was   proved   to   be   a   not   effective   idea.   These   three  
APIs   are   quite   complex   because   we   need   to   rewrite   the   basic   mechanism   inside   the   game.   After  
calling   all   three   APIs,   the   value   of   the   reward   is   calculated   and   send   back   to   the   Agent.   Due   to  
the   internal   errors   that   we   found   inside   the   game,   the   game   might   be   stuck   due   to   some  
unknown   bugs.   Thus,   the   temporary   data   would   not   be   written   into   the   disk   until   the   game   exit  
normally.   This   mechanism   works   like   a   loop,   it   would   terminate   when   one   game   reaches   the  
end.   In   the   final   step,   the   Agent   collects   all   previous   data,   writes   a   report   (in   JSON)   as   a   text   file.  

 
Figure   11.   The   detailed   process   inside   the   game   when   placing   a   tower.   

In   our   project,   the   Agent   works   as   a   server   which   needs   to   be   started   before   the   game.   After  
loading   the   main   scene,   the   socket   would   be   created   between   these   two   programs   to   exchange  
datastream.   Figure   11   describes   the   top   five   scripts   in   the   Unity   game,   including   the   game  
manager,   the   tile   script,   the   level   manager,   the   JSON,   and   the   client.   The   game   manager   is   the  
main   thread.   It   covers   the   three   APIs   that   we   mentioned   above   (placing   towers,   selling   towers,  
upgrading   towers)   and   the   socket   connection.   The   tile   script   and   level   manager   are   used   to  
create   the   game   map   for   the   game   according   to   the   data   received   from   the   Agent.   The   client  
must   be   built   on   a   child   thread   (the   whole   game   would   be   bothered   if   we   put   the   client   on   the  
main   thread).   The   client   has   four   main   functions,   receiving   data,   parsing   data,   converting   data,  
and   sending   data.   The   parsing   data   function   parses   the   JSON   string   to   C#   objects.   The  
converting   data   function   is   opposite   to   the   parsing   data   function,   it   would   convert   the   C#   objects  
to   JSON   strings.  

The   data   collection   process   is   time-consuming.   Enabling   multiple   threading   can   speed   up   the  
process.   The   maximum   number   of   games   that   one   agent   can   play   at   the   same   time   depends   on  
the   computer.   If   the   computer’s   CPU   has   14   cores,   25   games   might   still   be   fine.   For   a   normal  
computer   or   virtual   machine,   4-8   games   might   be   the   maximum.  



Raw   Data   Collection   
 
As   mentioned   in   the   Communication   Design,   an   automatic   agent   has   been   developed   to   place  
towers,   play   the   game,   and   generate   the   training   data   for   the   machine   learning   part.   The   tower  
placement   is   completely   random,   but   we   designed   strict   criteria   to   select   the   applicable   training  
data.   
 
As   mentioned   above,   we   build   two   models   to   train   our   data.   The   first   one   is   the   CNN  
classification   model.   The   wavenumber   that   we   allow   the   game   to   play   is   fixed;   usually,   we   set   it  
as   5.    The   latter   one   is   the   neural   network   regression   model.   The   wavenumber   in   this   model   can  
vary.  
 
Convolutional   Neural   Network   Classification   Model:  

 
Figure   12.   The   CNN   classification   model  
 
To   ensure   there   is   sufficient   data   for   the   training   part,   we   generated   over   8,000   groups   of   raw  
data   by   using   the   automatic   Agent   to   play   the   game   within   five   waves.   The   data   would   have   the  
following   information:  
 

1. The   total   number   of   monsters   killed:   stands   for   the   total   monsters   who   have   been   killed  
during   the   5   waves.  

2. Game   map:   is   a   3D   matrix   with   game_map_size*   wave_number   (currently   is   72*72*5)  
stores   the   current   map   of   the   tower   defense   game.   It   has   information   about   tower   type  
and   tower   location.  

3. Money   left:   the   total   money   left   after   playing   the   game   after   5   waves.   (Kill   monsters  
would   earn   money   and   buying   towers   would   spend   money)  

 
 
 
 



Deep   Neural   Network   Regression   Model   Based   on   Reward:  

 
Figure   13.   The   neural   network   regression   model  
 
To   ensure   the   data   is   sufficient   for   the   neural   network   regression   training,   we   collected   about  
3,000   datasets   by   using   the   automatic   Agent.   The   agent   keeps   playing   the   game   until   the   game  
is   over.   The   data   would   have   the   following   information:  

1. The   tower   placement   information   including   the   tower   type   as   well   as   tower   position.  
(8*12*4   3D   matrix)  

2. Wavenumber   to   store   the   state   of   the   game.  
3. Total   life   remaining.  

 
 

Data   Pre-processing   and   Labeling  
Convolutional   Neural   Network   Classification   Model:  
To   ensure   the   data   is   good   for   the   training,   a   pre-processing   step   is   implemented.   After   careful  
data   selection   by   every   team   member,   1,100   groups   of   data   are   selected   based   on   the   following  
criteria:  

1. It   can   successfully   play   5   waves.  
2. It   can   kill   a   relatively   high   number   of   monsters   (above   average).  
3. It   can   earn   relatively   more   money   (above   average).  

To   label   the   data,   a   cutoff   binary   labeling   method   is   incorporated.   After   reviewing   all   the   data  
after   pre-processing,   the   data   performs   above   the   average   (higher   than   the   average   monsters  
killed   &   higher   than   the   average   money   left)   are   labeled   as   1,   and   the   other   data   are   labeled   as  
0.  

label  Explanation  

1  The   dataset   with   a   higher   number   than   the   average   monsters   killed   and   more  
money   than   the   average   money   left.  

0  The   rest   are   labeled   by   0.  

Table   1.   The   mechanism   of   labeling   good/bad   data   in   the   CNN   classification   model   



For   the   training   data,   approximately   80%   of   the   1,100   data   would   be   used.   And   the   rest   20%   of  
the   dataset   would   be   used   for   validation   and   tuning   parameters   for   our   model.  
 
Deep   Neural   Network   Regression   Model   Based   on   Reward:  

 
Figure   14.   The   reward   function   (game   map,   wavenumber)  
 
After   exploring   various   methods   of   reward   function   designs,   we   found   the   combination   of   total  
life   remaining   and   the   farthest   position   that   a   monster   can   reach   is   the   best   indicator   of   the  
game   performance.   The   game   has   a   higher   reward   value   indicates   the   game   has   been   playing  
well.  

eward  Total life remaining  Monsters  shortest remaining distance to the endR =   +   ′  
                             F (game map, wave number)   =       

We   collect   the   randomly   generated   tower   placement   data   combined   with   wavenumber   as   well  
as   total   life   remaining   for   each   wave   and   monster’   shortest   remaining   distance   to   the   end.   The  
following   steps   are   implemented   for   the   data   preprocessing:  

1. Eliminate   the   incorrect   data   due   to   the   game   bug.  
2. Normalized   the   tower   placement   data   using   min-max   scaler   normalization  
3. Computed   the   reward   for   each   wave  

For   the   training   of   NN,   we   have   about   3,000   data.   90%   of   the   data   has   been   used   and   10%   was  
utilized   for   the   model   validation.  
 
 

 
 
 
 
 
 



Machine   Learning   Design  
 
The   machine   learning   framework   is   TensorFlow   2.0   [13]   (Keras   [14])   for   our   project.  
Currently,   we   incorporate   2   models   to   train   the   model   to   learn   the   best   strategy   to   play   the  
Tower   Defense   game   we   created.   We   initially   chose   CNN   because   the   game   map   for   the   tower  
defense   game   is   very   similar   to   an   image,   which   is   a   common   input   for   CNN.  
 
In   the   first   half   of   the   semester,   we   use   CNN   as   a   classifier   to   classify   good   and   bad   strategies.  
With   exploring   ways   to   improve   the   overall   performance,   we   found   the   regression   model   with  
deep   neural   networks   can   provide   better   outcomes   with   a   refined   reward   function.   The  
regression   model   is   used   to   predict   the   game   reward.   The   two   model   structures   are   presented  
below.  

 
Figure   15.   The   neural   network   regression   model   we   use   could   be   considered   as   part   of   the   CNN  
classification   model.   

 
We   choose   the    Deep   Neural   Network   Regression   Model     as   our   AI   algorithm   based   on   the  
following   criteria:  

1. It   uses   a   single   metric   (reward)   comparing   the   double   metric   (money   &   number   of  
monsters   killed)   in   the   CNN   model.   The   single   metric   is   more   explicit   and   easier   for  
evaluation.  

2. The   regression   model   is   an   end   to   end   model.   The   CNN   model   is   more   complicated   as   it  
needs   to   recognize   the   map   first   by   filters.   Less   bias   occurred   in   the   intermediate   states  
for   the   regression   model.  

3. Overall,   the   regression   model   performs   much   better.  
 



 
Figure   16.   The   mechanism   of   training   data   from   3000   samples,   generating   weight   files  
 
The   Agent   first   loads   all   the   3000   samples   (JSON   files)   from   the   disk.   The   JSON   parser   in   the  
Agent   can   convert   the   JSON   string   to   Python   objects,   including   the   game   maps,   rewards,   and  
the   wavenumber.   Because   the   dimension   of   the   game   map   and   wavenumber   is   different   (game  
map   is   3D   array   while   the   wavenumber   is   an   integer),   we   need   to   flatten   the   game   map   to   a   1D  
array   and   merge   it   with   the   wavenumber.   Then   the   1D   array   is   the   input   of   the   neural   network.  
We   set   the   training   epochs   to   30.   Only   the   weight   file   with   the   highest   R2   (min   loss   value)   would  
be   stored.  
 
Hyperparameter   Tuning   for   the   Deep   Neural   Network   Regression   Model   
The   model   design   is   shown   below.   We   choose   R-squared   (Coefficient   of   determination  
)   as   our   metric   for   the   hyperparameter   tuning   because   it   is   a   statistical   measure   of   how   close  
the   training   data   are   to   the   regression   result.   The   higher   R-squared   achieved   by   the   model  
indicates   the   regression   model   is   more   close   to   the   actual   scenario.  
 

R-Squared   value  Neurons   Per   Layer  

128  256  512  1024  2048  

Network  
Depth  

3  0.75  0.80  0.85  0.85  0.86  

5  0.82  0.82  0.83  0.83  0.84  

10  0.80  0.83  0.82  0.81  0.80  

Table   2.   Max   R2   value   of   the   neural   network   with   different   depths   and   number   of   neurons  



 

Neurons   per   Layer  3  

Network   Depth  5  

Activation   Function  ReLU  

Dropout   Rate  0  

Optimizer  Adam  

Epoch  30  

Table   3.   Hyperparameter   tuning   results  

 
Figure   17.   The   tendency   of   R2   value   when   we   set   the   depth=3,   number   of   neurons   per  
layer=1024  

 
The   regression   model   with   three   hidden   layers   and   2048   neurons   per   layer,   as   well   as   30  
epochs,   can   achieve   the   highest   R-squared   value   =   0.86.   As   the   value   is   very   close   to   1,   it  
means   our   model   prediction   result   is   very   close   to   the   actual   scenario.  
 
Game   Strategy   Generation  
For   each   wave,   the   agent   will   generate   up   to   1,000   possible   tower   placement   based   on   the  
current   money   available   using   a   backtracking   algorithm.   



 
Figure   18.   The   whole   filtering   process   can   be   considered   as   a   tree   (red   means   highest   reward)  
We   put   the   potential   tower   placement   dataset   generated   above   into   the   regression   model,   the  
corresponding   reward   is   predicted   by   the   model.   The   tower   placement   with   the   highest   reward  
will   be   selected   as   the   move   for   the   next   wave.  

 
Figure   19.   The   mechanism   of   verifying   data   by   generating   another   1000   samples   each   wave  
 
The   Agent   first   loads   the   weight   file   that   we   generated   in   the   previous   step.   Then   we   use   the  
same   function   that   we   used   to   randomly   generate   data   to   create   another   1000   samples.   The  
model   we   build   can   predict   the   reward   of   each   sample   and   only   maintain   the   best   one.   That  
means   only   one   of   1000   samples   would   be   on   the   left   and   doing   further   processing.   In   each  
wave,   the   Agent   would   generate   1000   samples   until   the   game   exit   (used   up   lives   or   no   place   left  
for   a   new   tower).   The   similarity   between   figure   18   and   figure   19   is   the   game   map   needs   to   be  
flattened   from   a   3D   array   to   a   1D   array   before   importing   to   the   neural   network.  



 
Performance   Evaluation   &   Conclusion  
The   regression   model   can   significantly   improve   the   performance   comparing   the   CNN   model   and  
other   random   generated   strategies,   which   can   play   the   game   well   and   survive   more   waves.   
 
To   prove   our   idea,   we   set   two   groups.   One   is   before   the   training   (represented   as   blue),   which  
means   everything   is   random;   the   other   is   after   the   training   (represented   as   yellow).   In   the  
survival   rate   line   chart,   the   maximum   survival   wave   before   training   is   20   while   it   reaches   to   22  
after   training.   When   we   look   at   wave   20,   the   value   of   yellow   is   much   higher   than   the   blue   line.  
However,   the   yellow   line   also   drops   down   after   wave   20   because   we   only   have   the   data   until  
wave   20.  

 
Figure   20.   The   survival   rate   before   the   training   and   after   the   training  
 
Based   on   the   reward   perspective,   the   regression   model   also   significantly   boosts   the   reward   of  
every   wave.   The   graph   below   shows   the   reward   distribution   comparison   of   the   model  
performance   before   training   and   after   training.  



 
Figure   21.   The   reward   before   the   training   and   after   the   training  

  
Overall,   the   strategy   generated   with   Deep   Neural   Network   Regression   Model   can   play   this   tower  
defense   game   with   more   waves   than   a   general   human   and   some   machine   learning   models.   The  
process   is   challenging   but   we   reached   our   initial   expected   goal.  

 
Figure   22.   A   screenshot   of   the   game   after   training  

 



 

Limitations   &   Future   Work  
There   is   a   minor   bug   in   the   original   game   we   found   in   GitHub,   the   bug   may   cause   the   game   to  
freeze.   But   that   situation   doesn’t   occur   very   frequently.   As   our   team   is   mainly   focused   on   the  
game   redesign   and   refine   the   AI   algorithms,   we   haven’t   solved   this   bug   yet.   The   bug   affected  
some   training   data   and   may   influence   the   trained   model.   Besides,   as   all   the   data   is   acquired  
using   the   same   map,   we   are   wondering   to   extend   our   model   to   various   game   maps   in   the   future.  
 
In   the   future,   our   work   will   be:  

● Fix   the   bug   caused   the   game   to   freeze.  
● Collect   more   training   data   after   the   bug   has   been   fixed.  
● Explore   to   improve   the   model   performance   using   newly   collected   bug-free   training   data.  
● Extend   our   model   to   more   maps.  

 
 
 
 
 

References  
[1].   Jesse   Huang,   2D-Tower-Defense     https://github.com/JessHua159 ,   2017  
[2].   S.   Wender,   "Using   reinforcement   learning   for   city   site   selection   in   the   turn-based   strategy  
game   Civilization   IV,"   Computational   Intelligence   and   Games,   CIG,   2008.  
[3].   A.   M.   H.   Wong,   "Game   layout   and   artificial   intelligence   implementation   in   mobile   3D   tower  
defence   game,"    International   Journal   of   Security   and   Networks,    2015.  
[4].   P.   A.   Rummell,   "Adaptive   AI   to   play   tower   defense   game,"   International   Conference   on  
Computer   Games   (CGAMES),   2011.  
[5].   S.   Wender,   "Applying   reinforcement   learning   to   small   scale   combat   in   the   real-time   strategy  
game   StarCraft:Broodwar,"    Computational   Intelligence   and   Games,   CIG,   2012.  
[6].   S.   Liu,   "Automatic   generation   of   tower   defense   levels   using   PCG,"   14th   International  
Conference   on   the   Foundations   of   Digital   Games,   2019.  
[7].   C.   Amato,   "High-level   reinforcement   learning   in   strategy   games,"   in   9th   International  
Conference   on   Autonomous   Agents   and   Multiagent   Systems,   2010.  
[8].   P.   Massoudi,   "Achieving   dynamic   AI   difficulty   by   using   reinforcement   learning   and   fuzzy   logic  
skill   metering,"   International   Games   Innovation   Conference   (IGIC),   2013.  
[9].   P.   Avery,   "Computational   intelligence   and   tower   defence   games,"   IEEE   Congress   of  
Evolutionary   Computation   (CEC),   2011.  
[10].   T.   G.   Tan,   "Automated   Evaluation   for   AI   Controllers   in   Tower   Defense   Game   Using   Genetic  
Algorithm,"   International   Multi-Conference   on   Artificial   Intelligence   Technology,   2013.  
[11].   S.   Wender,   "Combining   Case-Based   Reasoning   and   Reinforcement   Learning   for   Unit  
Navigation   in   Real-Time   Strategy   Game   AI,"   International   Conference   on   Case-Based  
Reasoning,   2014.  

https://github.com/JessHua159


[12].   B.   Auslander,   "Recognizing   the   Enemy:   Combining   Reinforcement   Learning   with   Strategy  
Selection   Using   Case-Based   Reasoning,"   European   Conference   on   Case-Based   Reasoning,  
2008.  
[13].   TensorFlow    https://www.tensorflow.org/  
[14].   Keras    https://keras.io/ ,    https://github.com/keras-team/keras/  
 
 

Team  
Name  Position  

Wen   Ni  Project   Manager,   Agent   Designer  

Licheng   Jiang  Game   Designer  

Hao   Jin  Game   Designer  

Nuo   Xu  Agent   Designer  

Enda   Zhang  Agent   Designer  

Junjin   Wen  Agent   Designer  

 

https://www.tensorflow.org/
https://keras.io/
https://github.com/keras-team/keras/

